Symbolbild von KI erstellt
Herausforderungen nicht unterschätzen
- 1. Stolperstein: Die lokale Datenverwaltung.
Edge-Geräte verfügen in der Regel über eine limitierte Rechenleistung und stark begrenzten Speicherplatz, die den Einsatz einer leichtgewichtigen Datenbank notwendig machen. In der Praxis haben sich dabei NoSQL-Datenbanken bewährt, die sowohl Server- als auch Embedded-Versionen aus einer Hand anbieten und über ein flexibles Datenmodell verfügen. - 2. Stolperstein: Die KI-Modelle.
Die meisten LLMs (Large Language Models) sind zu gross und benötigen zu viele Ressourcen, als dass ihr Einsatz am Edge sinnvoll wäre. Es gibt jedoch eine wachsende Zahl von schlanken Modellen, die für die Ausführung auf mobilen und IoT-Geräten optimiert sind. Der Kompromiss besteht in der Regel darin, dass kleinere Modelle meist weniger genau sind als ihre Cloud-basierten Pendants. Der grosse Nutzen von Echtzeitperformance und Sicherheit, die eine lokale Verarbeitung erreicht, ist diesen Kompromiss allerdings in jedem Falle wert. - 3. Stolperstein: Konnektivität und Bandbreitenbeschränkungen.
In vielen Edge-Anwendungen, insbesondere in abgelegenen oder mobilen Umgebungen, kann die Netzwerkverbindung instabil oder die Bandbreite begrenzt sein. Edge-AI-Lösungen müssen daher in der Lage sein, ohne permanente Internetverbindung zu funktionieren, gleichzeitig die über das Netzwerk übertragene Datenmenge zu minimieren und über Offline-First-Funktionen verfügen. - 4. Stolperstein: Die Synchronisation.
Die Synchronisierung von Daten ist in einer verteilten Anwendung dringend erforderlich, um die Integrität zu wahren. Das gesamte App-Ökosystem muss also in der Lage sein, auf Änderungen zu reagieren. Die Replikation aller Inhalte treibt allerdings den Datenverkehr in astronomische Höhen und kann zu Schreibkonflikten führen. Die eingesetzte Datenbank sollte daher über die Fähigkeiten verfügen, nur ausgewählte Daten unabhängiger Datenbank-Cluster zu replizieren sowie Lese- und Schreibkonflikte selbstständig zu lösen.